Improved seamless mutagenesis by recombineering using ccdB for counterselection
نویسندگان
چکیده
منابع مشابه
Improved seamless mutagenesis by recombineering using ccdB for counterselection
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expressio...
متن کاملBacterial Artificial Chromosome Mutagenesis Using Recombineering
Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the u...
متن کاملSite-Directed Mutagenesis Using Oligonucleotide-Based Recombineering
Methods enabling mutational analysis of distinct chromosomal locations, like site-directed mutagenesis, insertion of foreign sequences or in-frame deletions, have become of fast growing interest since complete bacterial genome sequences became available. Various approaches have been described to modify any nucleotide(s) in almost any manner. Some genetic engineering technologies do not rely on ...
متن کاملREPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering
Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamles...
متن کاملRapid and Programmable Protein Mutagenesis Using Plasmid Recombineering.
Comprehensive and programmable protein mutagenesis is critical for understanding structure-function relationships and improving protein function. There is thus a need for robust and unbiased molecular biological approaches for the construction of the requisite comprehensive protein libraries. Here we demonstrate that plasmid recombineering is a simple and robust in vivo method for the generatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2013
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gkt1339